首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70044篇
  免费   1422篇
  国内免费   630篇
测绘学   1711篇
大气科学   5029篇
地球物理   13887篇
地质学   24863篇
海洋学   6159篇
天文学   16115篇
综合类   206篇
自然地理   4126篇
  2022年   396篇
  2021年   684篇
  2020年   773篇
  2019年   822篇
  2018年   1893篇
  2017年   1759篇
  2016年   2234篇
  2015年   1318篇
  2014年   2176篇
  2013年   3765篇
  2012年   2276篇
  2011年   3118篇
  2010年   2603篇
  2009年   3504篇
  2008年   3254篇
  2007年   3045篇
  2006年   2876篇
  2005年   2353篇
  2004年   2253篇
  2003年   2109篇
  2002年   1925篇
  2001年   1773篇
  2000年   1630篇
  1999年   1273篇
  1998年   1375篇
  1997年   1286篇
  1996年   992篇
  1995年   1125篇
  1994年   948篇
  1993年   855篇
  1992年   830篇
  1991年   753篇
  1990年   833篇
  1989年   693篇
  1988年   631篇
  1987年   790篇
  1986年   647篇
  1985年   841篇
  1984年   905篇
  1983年   846篇
  1982年   812篇
  1981年   696篇
  1980年   650篇
  1979年   597篇
  1978年   597篇
  1977年   547篇
  1976年   529篇
  1975年   496篇
  1974年   502篇
  1973年   465篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
102.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
103.
For many basins, identifying changes to water quality over time and understanding current hydrologic processes are hindered by fragmented and discontinuous water‐quality and hydrology data. In the coal mined region of the New River basin and Indian Fork sub‐basin, muted and pronounced changes, respectively, to concentration–discharge (C–Q) relationships were identified using linear regression on log‐transformed historical (1970s–1980s) and recent (2000s) water‐quality and streamflow data. Changes to C–Q relationships were related to coal mining histories and shifts in land use. Hysteresis plots of individual storms from 2007 (New River) and the fall of 2009 (Indian Fork) were used to understand current hydrologic processes in the basins. In the New River, storm magnitude was found to be closely related to the reversal of loop rotation in hysteresis plots; a peak‐flow threshold of 25 cubic meters per second (m3/s) segregates hysteresis patterns into clockwise and counterclockwise rotational groups. Small storms with peak flow less than 25 m3/s often resulted in dilution of constituent concentrations in headwater tributaries like Indian Fork and concentration of constituents downstream in the mainstem of the New River. Conceptual two or three component mixing models for the basins were used to infer the influence of water derived from spoil material on water quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
104.
In situ U‐Th/Pb (LA‐ICP‐MS) monazite ages from the Hindu Kush of NW Pakistan provide new petrochronologic constraints on the tectonic evolution of the Himalaya–Karakoram–Tibet orogen. Monazites from two adjacent garnet + staurolite schist specimens yield multiple age populations that record the major Mesozoic and Cenozoic deformational, magmatic and metamorphic events along the southern margin of Eurasia. These include the accretion of the Hindu Kush–SW Pamir to Eurasia during the Late Triassic, followed by the accretion of the Karakoram terrane in the Early Jurassic. Younger Jurassic and Cretaceous ages record the development of an Andean‐style volcanic arc along the southern Eurasian margin, which ended with the docking of the Kohistan island arc and the emplacement of the Kohistan–Ladakh batholith during the Late Cretaceous. The initial Eocene collision of India with Eurasia was followed by widespread high‐temperature metamorphism and anatexis associated with crustal thickening within the Himalaya system in the Late Oligocene and Early Miocene.  相似文献   
105.
106.
107.
To develop an evidence base to help predict the impacts of land management change on flood generation, four experimental sites were established on improved grassland used for sheep grazing at the Pontbren catchment in upland Wales, UK. At each site, three plots were established where surface runoff was measured, supplemented by measurements of soil infiltration rates and soil and vegetation physical properties. Following baseline monitoring, treatments were applied to two of the plots: exclusion of sheep (ungrazed) and exclusion of sheep and planting with native broadleaf tree species (tree planted), with the third plot acting as a control (grazed pasture). Due to a particularly dry summer that occurred pre‐treatment, the soil hydrological responses were initially impacted by the effects of the climate on soil structure. Nevertheless, treatments did have a clear influence on soil hydrological response. On average, post‐treatment runoff volumes were reduced by 48% and 78% in ungrazed and tree‐planted plots relative to the control, although all results varied greatly over the sites. Five years following treatment application, near‐surface soil bulk density was reduced and median soil infiltration rates were 67 times greater in plots planted with trees compared to grazed pasture. The results illustrate the potential use of upland land management for ameliorating local‐scale flood generation but emphasise the need for long‐term monitoring to more clearly separate the effects of land management from those of climatic variability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
108.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
109.
We investigate the influence of mantle flow relative to the lithosphere on subduction dynamics. We use 2D thermo‐mechanical models assuming incompressible non‐Newtonian fluid rheology. Different mantle flow velocities consistent with absolute plate motion models are tested, as well as both directions of flow, either sustaining or opposing slab dip. The effects of different inflow/outflow velocity profiles, slab strengths and upper–lower mantle viscosity contrasts are also evaluated. Slab dip deviations between models with opposite mantle flow directions range from 37° for relatively strong slabs (ηmax = 1025 Pa s) to 50° for weaker slabs (ηmax = 1024 Pa s), accounting for a significant amount of natural slab dip variability. For imposed mantle flow supporting the slab, the initial stage of slab steepening is followed by a stage of continuous slab dip decrease. This slab shallowing eventually leads to mantle wedge closure, subduction cessation and slab break‐off, possibly driving subduction flips.  相似文献   
110.
The main aim of this research was to assess the mercury transport from an estuarine basin with a background of anthropogenic contamination during a spring tidal cycle (year 2009) and compare it with two previous tidal cycles (years 1994 and 1999), as part of a long‐term monitoring program. Results showed that effective mercury transport occurs both in the dissolved and particulate fractions (0.18 and 0.20 kg per tidal cycle, respectively), and despite an overall decrease in environmental contamination, results more than double previous findings on particulate transport in the system. These findings result essentially from changes in the tidal prism (net export of 2 million m3 of water), given that both dissolved and particulate concentrations did not increase over time. Hydrodynamic simulations were performed to evaluate the effect of physical disturbance (dredging) and weather events (increased freshwater flow) in these processes, and results suggest the increased freshwater flow into the system as the main forcing function for the mercury transport increment. These results highlight the importance of long‐term monitoring programs, since despite an overall improvement in local contamination levels, the enhancement of transport processes through hydrological changes increases environmental pressure away from the contamination source. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号